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The Ramsey model may be de�ned as:
max 11��P1t=0 �tC1��t

s:t:

Ct = aKbt �̀1�bt � It
Kt+1 = (1� �)Kt + It
K0 = �K0

(1)

The problem with representing this model using conventional optimization software is the
in�nite horizon. Numerical solution algorithms for optimization are normally limited to �nite-
dimensional models.
1 A Naive Approach

One approach one might consider would be to ignore the in�nite horizon and simply formulate
the model as a �nite-dimensional nonlinear program. This type of model is easily implemented, as
illustrated by the following GAMS code:
variables

C(t) Consumption
K(t) Capital stock
Y(t) Production
I(t) Investment
W Intertemporal utility;

equations
production Cobb Douglas production function
allocation Output market
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accmulation Capital stock evoluation
utility Intertemporal walfare;

utility.. W =e= sum(t, beta(t) * C(t)**(1-eta)) /(1-eta);

production(t).. Y(t) =e= a * K(t)**b * l(t)**(1-b);

allocation(t).. Y(t) =g= C(t) + I(t);

accmulation(t+1).. K(t+1) =e= (1-delta)*K(t) + I(t);

Unfortunately, the �nite formulation shown here has limited usefulness for practical applications
due to \terminal e�ects". The optimal solution to this model involves zero investment for many of
the �nal periods, as the value of the capital stock falls to zero in the �nal year.

We can illustrate this phenomenon by setting up a calibrated numerical example in which we
assume the base year (t = 0) is consistent with the long-run steady-state. This implies the following
assignment of input parameters such that the model is consistent with a stationary growth path:
* Benchmark data assumnptions:

scalars
g Labour growth rate in efficiency units /0.023/
delta Capital depreciation rate /0.04/
i0 Base year investment /0.30 /
c0 Base year consumption /0.27 /
b Capital value share /0.65 /

* Calibrated parameters:

scalars
rho Calibrated marginal product of capital,
k0 Initial capital
l0 Initial labour
a Cobb Douglas scale parameter;

* Calibrate base year investment:

k0 = i0/(g+delta);

* Calibrate the base year marginal product of capital:

rho = b*(c0+i0)/k0-delta;

* Interrupt the solution process if the model is unbounded:

abort$(g > rho) "Growth rate exceeds discount rate.",g,rho;

* Labor supply in the base year:
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l0 = (1-b)*(c0+i0);

* Labor supply over the model horizon:

l(t) = l0 * power(1+g, ord(t)-1);

* Utility discount parameter:

beta(t)= power((1+g)**eta/(1+rho), ord(t)-1);

* Calibration of production scale parameter:

a = (c0+i0)/(k0**b * l0**(1-b));

The model is then initialized with the steady-state capital stock, i.e.
K.fx(tfirst) = k0;

This speci�cation begins right at the steady-state equilibrium for which the optimal policyinvolves investment in each period at a level which covers growth plus depreciation, i.e.
I�t = (g + �)K�t 8t � 0

While this is the \true solution", the numerical solution fails to take into account the post-terminal return to capital, and it therefore optimizes the �nite-horizon utility by permitting invest-ment fall to zero during the �nal decade of the planning horizon. Figure 1 compares model outputsfor horizons varying from 60 to 200 years. In each of these simulations, the optimal value of in-vestment in the terminal periods is zero, and the model fails to replicate the known in�nite-horizonpolicy regime, particularly for years more than 10 years into the future.
Figure 1 goes about here.

2 Simple Terminal Constraints may be Counterproductive

Seeing that the problem with terminal approximation is the representation of steady-state invest-ment levels in the �nal period, one might consider simply imposing a constraint requiring thatterminal investment be of su�cient level to cover both growth and depreciation of capital stocksin the �nal period, i.e.
IT = (g + �)KTIn the GAMS model this is written:

terminvest(tlast).. I(tlast) =g= (g+delta) * K(tlast);

This simple constraint is unable to correct for the terminal approximation error. In fact, inmany cases it tends to exaccerbate the problem, as illustrated in Figure 2. Here we see that theintroduction of a terminal investment target tends to cause investment to fall to zero for a periodof several years prior to the terminal period. This leads to a lower level of aggregate capital in theterminal period, reducing the investment costs which otherwise would be introduced through theterminal investment constraint.
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Figure 2 goes about here.

3 An NLP-Based Approximation Method

The issue of how to approximate an in�nite horizon programming problem with a �nite-dimensionalmodel was a research topic in the 1960's. Among a number of papers (see, e.g. Eckhaus and Parikh(1968) and Manne (1970)), I �nd the paper by Barr and Manne (1967) to be particularly clear andintuitive. The approach applies a constraint on terminal investment as a fraction of the terminalcapital stock. In addition, Barr and Manne propose an adjustment of the weight placed on terminalperiod consumption. This increased weight accounts for consumption in the post-terminal period,the e�ect of which is to diminish the incentive to drive investment to zero in the years leading upto the terminal period.The adjustment factor is calculated as the present-value index of a consumption index whichgrows at rate g with interest rate � from the �nal period of the model to the in�nte horizon, i.e.
� = 1X

t=T
�1 + g1 + �

�t�T = 1 + r
r � g

In the GAMS program, this adjustment of �T is performed with the following assigment:
beta(tlast) = beta(tlast) * (1+rho)/(rho-g)

After having made these changes (terminal investment constraint plus increased weight onterminal period consumption) the nonlinear programming model faithfully reproduces the steady-state growth path when initiated at the terminal point.
4 The Complementarity Problem

A complementarity problem corresponding to a nonlinear program is a system of Kuhn-Tuckerconditions. These types of model can be represented in most modern modelling languages, andthey o�er a potential improvement over the Barr-Manne approximation method for approximateinglong-term adjustment paths with short-term model horizons.Let us �rst look at what a complementarity problem looks like in this instance. The MCP modelshown below nearly corresponds equation-by-equation to the �rst-order conditions for the Manne-Barr model, however in this model we incorporate one additional variable (the salvage value ofcapital immediate following the �nal year of the model) and a corresponding termination conditionwhich either relates terminal investment to the terminal capital stock or it targets the growth rateof investment in the terminal two years of the model.
variables

C(t) Consumption
K(t) Capital stock
Y(t) Production
I(t) Investment

PY(t) Shadow value of output,
P(t) Shadow value of market supply,
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PK(t) Shadow value of capital,
PKT(t) Salvage value of capital;

* Primal constraints (from the NLP):

production(t).. a * K(t)**b * l(t)**(1-b) =E= Y(t);

allocation(t).. Y(t) =g= C(t) + I(t);

accmulation(t).. (1-delta)*K(t-1) + I(t-1) + (k0*%k0%)$tfirst(t) =e= K(t);

* Dual constraints (first-order-conditions from the NLP):

foc_y(t).. PY(t) =E= P(t);

foc_c(t).. P(t) =E= beta(t) * C(t)**(-eta) / (c0*qref(t))**(1-eta);

foc_i(t).. P(t) =G= PK(t+1) + PKT(t)$tlast(t);

foc_k(t).. PK(t) =E= b * PY(t) * a * K(t)**(b-1) * l(t)**(1-b)

+ (1-delta) * (PK(t+1)+PKT(t)$tlast(t));

* Terminal approximation constraint (non-integrable equation):

kt(tlast).. sum(t$tlast(t), I(t) - (1+g) * I(t-1))$svtarget +

(I(tlast) - (g+delta) * K(tlast))$(not svtarget =E= 0;

We have argued (Lau, Pahlke and Rutherford 2002) that the \state-variable targetting" ap-
proach provides more precise terminal approximiations than Manne-Barr. This is true, but the
improvement in precision depends on the application. In the present model, the state-variable
method leads to a modest improvement in the terminal approximation, as is illustrated in Figure
3.

In this experiment, we contemplate an unanticipate drop in the capital stock and subsequently
we trace out the adjustment path. (See model input k0 which is interpreted as a scale factor on
base year capital stock relative to the steady-state value, k0=1.)

This adjustment path involves a short-term decrease in investment which gradually returns to
the long-run steady state over a period of more than 100 years. In our simulations, we evaluate
the terminal approximation over time intervals of 30, 60 and 200 years, using both the Manne-Barr
NLP formulation and the state-variable targetting MCP formulation. We see that for short time
horizons, the MCP formulation with targeting of terminal investment generally performs better
than the NLP approach. The reason we get a more precise approximation is that it is easier to
characterize the terminal growth rate of investment rather than the level of investment in the �nal
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year.
Figure 3 goes about here.
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Figure 1  Investment Approximation Errors for Alternative Horizon Dates 

(Ramsey Model with No Terminal Constraints) 
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Figure 2  Investment Approximation Errors for Alternative Horizon Dates 

(Ramsey Model with Terminal Constraint:  IT = (g + δ) KT 
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Figure 3  Investment Response to Unanticipated 50% Loss in Capital Stock 

(NLP=Manne-Barr Model  - MCP=State Variable Targetting) 
 


