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Motivation

• For many years, from 1980 to 2000 we experienced ongoing
improvements in computer software and hardware for mathe-
matical programming, specifically in modeling languages and
floating point speed.

• During this period integrated formulations were favored due
their advantages in terms of clarity of ideas, compactness of
model specification and ease of debugging.

• Complementarity methods have taken on increasing promi-
nence because they provide a unifying approach to integrate
of optimizing behavior in an equilibrium framework.



• Slowing rates of improvement in processors and modelling

languages over the past five years have motivated a renewed

interest in decomposition.

• In my opinion, effective decomposition algorithms require fa-

miliarity with how components of a given model interact.

• Optimization and complementarity “subproblems” can be

specified and solved within modeling languages, eliminating

the need for extensive programming.



Decomposition Frameworks

We are motivated by an interest in:

• Large-scale models

• Models in which agents or processes operate on inconsistent

time scales

• Models in which non-convexities characterize certain elements

of a model structure (I mention these models but do not go

into details today.)



Algorithmic Approaches

• Sequential recalibration of multi-household demand by a sin-

gle representative agent

• Sequential quadratic programming – approximation of gen-

eral equilibrium demand system in a partial equilibrium sub-

problem.

• Sequential complementarity programming.



Template Applications

1. Large scale applications

• Arrow-Debreu equilibrium models with many households.

• Energy technology models which embed bottom-up and

within top-down frameworks.



2. Models with components operating on inconsistent time scales

• Integrated assessment modelling of climate change

• Endogenous technical change through profit-oriented re-

search and development

3. Models with non-convexities

• Models of imperfect competition with segmented markets

and heterogenous firms.



Newton/Josephy Method for Nonlinear Complementarity

Given: F : Rn → Rn

Find x ∈ Rn such that:

F (x) ⊥ x ≥ 0

Repeat:

1. Construct an affine approximation:

L(x)|x=x̄ = F (x̄) +∇F (x̄)(x− x̄)

2. Solve

L(x) ⊥ x ≥ 0



Josephy’s Approach with NCP Subproblems

Given: F : Rn → Rn

Find x ∈ Rn such that:

F (x) ⊥ x ≥ 0

Repeat:

1. Construct an approximation:

G(x)|x=x̄ ≈ F (x)|x∈B(x̄)

2. Solve

G(x) ⊥ x ≥ 0



Large Scale Application: Many Households

Representative agent model:

maxU(C) =


∑

i

αiC
ρ
i




1/ρ

s.t.
∑

i

piCi = M

Given p̄, C̄, calibrate share parameters given ρ:

αi = λp̄iC̄
1−ρ
i







Multiple household model:

maxuh(ch) =


∑

i

αhi (chi )ρ




1/ρ

s.t.
∑

i

pic
h
i = Mh

Calibration based on consistent benchmark dataset:

∑
h c̄

h
i = C̄i and αhi = λp̄i(c̄

h
i )1−ρ





Recalibration step, taking:

C̄ki =
∑

i

cih(p̄k)

αki = λp̄ki (̄Cki )1−ρ





Application: Aurbach-Kotlikoff Overlapping Generations Model

• Annual time steps over a 150 year horizon

• One generation leaves the economy and a new generation

enters the economy in every period

• Economic lifetime of a single generation is 60 years (age 20

to age 80)

• Each cohort maximizes lifetime utility taking decisions of

other agents as given.



• Original applications of this model relied on custom algo-

rithms (Gauss-Seidel algorithms). New papers highlight ad-

vantages of complementarity format which accomodates cor-

ner solutions (e.g. retirement from the workforce).







Convergence Theory?

Scarf (1960) provides a model which demonstrates the potential

shortcomings of the sequential recalibration approach.

• n goods and n consumers

• Consumer i is endowed with one unit of good i and demands

both goods i and i+ 1.

• Preferences are constant-elasticity-of-substitution:

Ui(d) =
(
θd
ρ
ii + (1− θ)dρii+1

)1/ρ



• Compare performance of the sequential recalibration algo-

rithm with that of:

1. Newton

2. Tatonnement

3. Sequential joint maximization (Negishi procedure)







Large Scale Application: Many Technologies

The model: Top-Down Economic System, Bottom-Up Energy

System

p denotes a non-negative n-vector in prices for all goods and

factors,

y is a non-negative m-vector for activity levels of constant-returns-

to-scale (CRTS) production sectors,

M is a h-vector of consumer income levels,



e represents a non-negative n-vector of net energy system out-

puts (including, for example, electricity, oil, coal, and natural

gas supplies to residential, industrial, and commercial cus-

tomers), and

x denotes a non-negative n-vector of energy system inputs (in-

cluding labor, capital, and materials inputs).



Equilibrium

Zero profit:

−Πj(p) ≥ 0

Market clearance:
∑

j

∇Πj(p) yj +
∑

k

ωk + e ≥
∑

k

dk(p,Mk) + x

Income balance:

Mk = pT [ ωk + θk(e− x) ]



Profit-maximizing energy sector:

e and x solve:

max pT (e− x)

subject to:

Ax+Bz ≥ Ce

e, x ≥ 0, ` ≤ z ≤ u



Attribution of energy sector rents:

Mk = pTωk + Θk(µTu+ λT `) (1)



Model Dimensions

• m economic activities

• n energy goods

• M LP constraints

• N ancillary LP decision variables (z ∈ RN)



Equation Count

• Integrated MCP model: m+ 3n+ h+M + 3N

• Economic model (without energy system): m+ n+ h

• LP energy model: M constraints and N + 2n variables.



An Iterative Decomposition Algorithm



Constructing the Approximation

Demand for energy good i as:

ei(p) = ēi [1− εi(pi/p̄i − 1)]

where εi is the elasticity of demand and ēi and p̄i denote the ob-

servable reference quantities and prices for the demand function

calibration.



The calibrated inverse demand function is:

pi(e) = p̄i [1− (1− e/ēi)/εi]

The integrated market demand function is:
∫
pi(e)de = p̄iei

[
1− ei − 2ēi

2εiēi

]
,



Iterative Sequence: Single Market Partial Equilibrium
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Iterative Sequence: Multimarket General Equilibriu
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Decomposition to Deal with Ill-Conditioning



Integrated Assessment of Climate Change

• Broad classes of IA models: policy simulation models and

policy optimization models

• Optimizing models are used for cost-benefit or cost-effectiveness

analysis.

• IAMs must be solved over very long time horizons, as dictated

by the climate component which operates over a period of

200 to 300 years.



• Existing IAMs are formulated as optimization models which

are unable to address second-best phenomena (tax distor-

tions, failures in the market for ideas, imperfect competition

etc.)

• Numerical problems are to be expected. Economic decisions

are subject to time preferences, with discounting of future

consumption. Goods valued at $1 today delivered one hun-

dred years in the future are worth less than $0.01.



NLP Climate Policy Model

max
∞∑

t=0

(
1

1 + ρ

)t
U(Ct, Dt)

s.t. Ct = F (Kt, Dt, Et)− It
Kt+1 = (1− δ)Kt + It

Dt = Dt(TEt )

TEt = H(St)

St+1 = G(St, Et)

K0 = K̄0, S0 = S̄0



Schematic Structure of Integrated Assessment Models for

Climate Change

Economic Model 
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Linear Approximation of the Climate Model

Merge TEt = H(St) and St+1 = G(St, Et) into a single equivalent

equation

TEt = Γt(S0, E0, E1, ..., Et−1)

Associated first-order condition:

−pt
∂F

∂Et
=
∞∑

τ=t

∂Γτ
∂Et

pDτ =
T∑

τ=t

∂Γτ
∂Et

pDτ +
∞∑

τ=T+1

∂Γτ
∂Et

p̃Dτ



Logic of the Decomposition
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Timing of Returns to Economic and Climate Investments
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Sensitivity of the Emissions Control Rate
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Conclusions

• Decomposition methods can be portrayed as an extension

of the Josephy/Newton approach to a setting in which sub-

problems are nonlinear complementarity problems with ap-

proximations based on solution of related mathematical pro-

gram(s).

• Decomposition methods can be effectively applied to large

scale economic equilibrium problems

• Successive recalibration provides highly efficient techniques

for Arrow-Debreu models with large numbers of consumers.



• Quadratic programming provides a effective scheme for in-

tegrating bottom-up linear programming submodels into a

general equilibrium framework.

• Decomposition provides a means of interfacing models which

operate on different time scales.

• The implementation of decomposition methods with a mod-

eling language allows us to exploit model structure which

would be undetectable within the solver.


