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If we assume a constant consumption growth rate of γ from periods T to ∞, the Cobb-Douglas

utility function can be written as:
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Where then can write:
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I prefer to take the steady-state growth and interest rates as model inputs in place of the

discount factor. If the assumed steady-state growth rate is γ and the steady-state interest rate is

r, you have a discount rate given by:
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If you are working with a CES utility function with an intertemporal elasticity equal to 1/θ, the

algebra is a bit different. Using the calibrated share form and imposing the terminal assumption

that Ct = (1 + g)t−TCT ∀t ≥ T , we have:
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Note that this expression corresponds precisely to the Cobb-Douglas result when we have θ = 1.
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