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If we assume a constant consumption growth rate of v from periods T' to oo, the Cobb-Douglas

utility function can be written as:
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Where then can write:
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I prefer to take the steady-state growth and interest rates as model inputs in place of the

where

and

discount factor. If the assumed steady-state growth rate is v and the steady-state interest rate is

r, you have a discount rate given by:
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If you are working with a CES utility function with an intertemporal elasticity equal to 1/6, the
algebra is a bit different. Using the calibrated share form and imposing the terminal assumption

that C; = (1 +¢)""TCr Vt > T, we have:
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Note that this expression corresponds precisely to the Cobb-Douglas result when we have 6 = 1.



